Search results

  1. S

    Mixed model Beta distribution fit diagnostics

    Hello, I have a split-plot design and I want to test the effect of 2 factors on the disease incidence (continuous proportion). I am using Beta dist. which is appropriate for these data (bounded within 0-1). The fit statistics look OK (Pearson Chi-square/DF close to 1) Fit Statistics for...
  2. S

    proc fastclus output interpretation

    Thank you! That makes more sense now!
  3. S

    proc fastclus output interpretation

    Hello, I am using proc fastclus to perform k-means clustering. In Figure 42.2: Cluster Summary Table from the FASTCLUS Procedure, an R-square value is reported (please see link below)...
  4. S

    Mixed model LSMEANS vs ESTIMATE (BLUP)

    Thank you hlsmith for your thoughts and interest on this. I will try to email the author of the book, there is no reply to my post on SAS Communities. The std error for LSMEANS is 1.01 (p-value=0.0197) and for the BLUP is 0.83 (p-value=0.0005). The issue is that in another dataset, the...
  5. S

    Mixed model LSMEANS vs ESTIMATE (BLUP)

    I need to know why they are different. If the above BLUP estimate is the inference across the 5 locations, what is the LSMEANS then? Don't LSMEANS take into account the random effects and produce estimate of fixed effects across the 5 locations? That is what I thought. So which one should I...
  6. S

    Mixed model LSMEANS vs ESTIMATE (BLUP)

    Thank you hlsmith. I will read it thoroughly because I really need to understand the difference. It appears that LSMEAN compute the treatment effect across locations differently than the ESTIMATE (BLUP). I don't think I am doing something wrong, I follow the examples in chapter 6 in SAS for...
  7. S

    Mixed model LSMEANS vs ESTIMATE (BLUP)

    Randomized complete block design.
  8. S

    Mixed model LSMEANS vs ESTIMATE (BLUP)

    Hello, I am analyzing data from a multi-location trial (5 locations) to test the effectiveness of a treatment with 2 levels. The design is RCB with 3-4 replications in every location. I use the model below: proc mixed data=mydata; class location rep trt ; model Y=trt/ddfm=kr2 residual...
  9. S

    multi-location latin square design analysis

    Hello, I have a 5 x 5 Latin square design which is replicated 5 times within each location (same rows and columns in each location). The same design was used in 10 different locations and I was asked to perform a combined location analysis. I have done it before with other designs, such as RCB...
  10. S

    meta-analysis vs. random effect combined analysis

    I have data from 200 similar studies, all measuring the same effect of a continuous independent variable on the same continuous response. I say similar because the designs are different (split plot vs. rcbd) and the levels of the independent variable is not the same across all studies. I have...
  11. S

    permutations "partykit"

    Hello, I am new to R and I was reading about conditional decision trees. In the "party" package there is an option to select number of permutations (nresample=...). However, that is not the case with "partykit". So does it use permutations, even if it is a constant number and I can't...
  12. S

    split-split plot with continuous subplot variable

    Hello I am trying to analyze data from a split-split-plot design. The sub-plot is a continuous factor and since we suspect a non-linear relationship, the quadratic form needs to be tested as well. Factors: a-main plot-5 levels b-subplot-continuous c-sub-subplot-2 levels. To test the quadratic...
  13. S

    specify correct random effects

    Hi all, I have a CRD with 4 reps and 4 treatments (A, B, C, D). The study took place in 1 location for 3 years. I want to pool over years (so treat year as random effect). I am interested in main effects and up to 2-way interactions. So I am using the following model and random statement...
  14. S

    parameter estimate of categorical variable

    I run multiple regression with 2 continuous and 1 categorical variable (3 levels). SAS will hold the last level of the categorical variable and will not give an estimate. I know that this is the intercept. My question is how to calculate the interaction of the continuous variable with the 3rd...
  15. S

    non-mutually exclusive outcomes

    Hi, I have 4 outcomes (A B C D) that one of them is calculated as a weighted average of the first 2 (D=0.6*B + 0.4*C). Then I ran ANOVA to examine the effect of 2 factors on the 4 outcomes. My analysis was rejected because they said that D is not mutually exclusive from all other factors...
  16. S

    Spatial Statistics and SAS Books

    Hi all, I am looking for a book that explains applied Spatial Statistics methodology using SAS. I am interested in Spatial, Spatiotemporal data and Kriging. Thank you.
  17. S

    Time series regression books

    Hi, I am interested in Time series regression and I would like to find 1-2 good books that explain Time series with examples using SAS. Does anybody know and can propose good books that I can purchase? I am into agriculture/environmental science if that matters. Thanks
  18. S

    AMMI algorythm

    Hi, Does anyone has experience using AMMI (additive main effects and multiplicative interactions)? If yes, could you please provide practical information on how it works and SAS code that performs the analysis? This is a technique used in multi-location, multi-year plant breeding...
  19. S

    PCR interaction of PCs

    Hi, I am using PCA to avoid multicollinearity problems and then I want to use the first 2 PCs in linear regression. The 1st PC contains 60% of variability and the 2nd 32%. Is it valid if I use a data step in SAS, create a new variable which is the interaction of these 2 PCs and say that...
  20. S

    compare F statistics vs P-values

    Hi I have a question about comparing F statistics among effects. I have the following anova table Parameter Estimate Standard Error t Value Pr > |t| Factor1 12088.62915 2249.053598 5.37 <.0001 Factor2 -28.62915...