Rather than laboriously type out the likelihood function in a response -- finding the right symbol codes and whatnot -- I linked yesterday to a web page that showed the likelihood function (admittedly, for a binomial) that I would've ended up typing. Here it is again:
https://onlinecourses.science.psu.edu/stat504/node/28. Regardless, you can safely assume for the purposes of this and future discussions that I understand MLE, how to set up a likelihood function, etc.
I think this is where we diverge. I've agreed several times that these probabilities are driven by mu and sigma. But the function is not closed-form. The PDF is, but the CDF isn't...it's a definite integration of the PDF from -infinity to x. So if you could please explain to me how to use that integral (i.e. the Normal CDF) in place of p such that I can maximize likelihood relative to mu and sigma, that would be fantastic. Or if there's a simpler way to do it, that would be even better. Either way, I hope you can see where the maximum likelihood function for a multinomial isn’t the piece of the puzzle that I’m missing.
See above. I fully realize that the ps are functions of mu and sigma. What I don’t yet understand – but am hoping you do – is how to employ the CDF of a Normal in the multinomial likelihood function.