I have a request from a person for a sample size calculation. When I requested information about the potential study data they provided two means and standard deviations from a prior study. Given the values (x1=7; s1=6 and x2=0.5; s2 = 2) it appears the data are right skewed. I can simulate those data to work toward a simulation study, though the values actually represent before and after values. So observations are paired. So I will have to simulate two variables, but they will have to be correlated. Also data have a lower bound of zero.
I guess I can do this, but I have no idea how correlated the paired data are. Any suggestions?
Also, are there any basics that I am missing, e.g., the difference of two paired skewed data equal...?
My current plan is to simulate two skewed variables and correlate them, I guess, since a bigger pre-value may mean an ability for greater decrease then lower pre-values which have little wriggle room to decrease. So, any suggestions would be appreciated. Or can I simulate a variable and subtract a constant from it, that sound good too.
Plan, simulate data and normalize and run say 10,000 ttests and play around with sample sizes. I can also do the same thing but run Wilcoxon sign rank tests with unnormalized data. Though if the former seems feasible, that may be a good approach, because the final study analyses may require controlling for covariates, though that was not done in the flimsy example those parameters were from.

I guess I can do this, but I have no idea how correlated the paired data are. Any suggestions?
Also, are there any basics that I am missing, e.g., the difference of two paired skewed data equal...?
My current plan is to simulate two skewed variables and correlate them, I guess, since a bigger pre-value may mean an ability for greater decrease then lower pre-values which have little wriggle room to decrease. So, any suggestions would be appreciated. Or can I simulate a variable and subtract a constant from it, that sound good too.
Plan, simulate data and normalize and run say 10,000 ttests and play around with sample sizes. I can also do the same thing but run Wilcoxon sign rank tests with unnormalized data. Though if the former seems feasible, that may be a good approach, because the final study analyses may require controlling for covariates, though that was not done in the flimsy example those parameters were from.