> y <- c(rnorm(19, 2), 100)
> z <- rep(c("c", "t"), each=10)
>
> dat <- data.frame(y=y, z=z)
>
> mod <- lm(y~z, data=dat)
> summary(mod)
Call:
lm(formula = y ~ z, data = dat)
Residuals:
Min 1Q Median 3Q Max
-12.567 -9.376 -1.696 0.153 88.434
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.743 6.962 0.250 0.805
zt 9.823 9.846 0.998 0.332
Residual standard error: 22.02 on 18 degrees of freedom
Multiple R-squared: 0.0524, Adjusted R-squared: -0.0002484
F-statistic: 0.9953 on 1 and 18 DF, p-value: 0.3317
> anova(mod)
Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(>F)
z 1 482.5 482.46 0.9953 0.3317
Residuals 18 8725.4 484.74
>
> #cohen's d
> diff(sapply(split(dat$y, dat$z), mean))/sqrt(anova(mod)$`Mean Sq`[2])
t
0.4461571