Best to sometimes compose long replies in Notepad, so you can save them! Even without saving, an editor on your machine is likely to be more stable. Online entry carries risk of losing the answer. (Took my own advice -- Good thing I did, since I nearly lost this reply! Note that if the reply is visible when it logs you out, select and copy/paste it into an editor, then paste it back).
I gather you already understand that no followup is needed for the main effects. With only two levels, the p-value for them *is* your comparison of the two levels they represent.
If you had 3 non-repeated factors, the issue would be a bit more complicated, because you would not want to compare all the subjects in A1C1 to A2C1 with a regular unpaired t-test while some of each were in B1 and others in B2. Given a main effect of B, you would be greatly increasing the variability of subjects within the two groups. To avoid that, you would use the error term from within the individual cells in an appropriate way.
Manipulating repeated measures error terms is more difficult, but I think you have an easy solution. For every subject, get the average of his or her value in A1B1C1 abd A1B2C1 etc.. In other words, average across the two levels of B for each subject. Then do the analysis on just A and C.
I'd guess that the main effects of A and C and the interaction will have the same F and P as they did overall. For terms that don't directly involve B the analysis averages over it anyway.
So now you can do paired t-tests to compare your cells of interest. Using a pooled error term from the whole design could give you more degrees of freedom, and perhaps a smaller p value, but the value is small unless your n is tiny. Plus doing that makes assumptions. I don't know that I could guide you on *exactly* how to do that without digging upsome research or trying some examples.